
Safe Type-level Abstraction in Scala

Adriaan Moors ∗ Frank Piessens
K.U. Leuven

{adriaan, frank}@cs.kuleuven.be

Martin Odersky
EPFL

martin.odersky@epfl.ch

Abstract
Most formal accounts of object-oriented languages have focussed
on type soundness: the safety that type checking provides with re-
spect to term-level computation and abstractions. However, with
type-level abstraction mechanisms becoming increasingly more so-
phisticated, bringing this guarantee to the level of types has become
quite pressing. We call this property kind soundness: kind checking
ensures that type constructors are never applied to unexpected type
arguments. We present Scalina, a purely object-oriented calculus
that employs the same abstraction mechanisms at the type level as
well as at the kind level. Soundness for both levels can thus be
proven by essentially the same arguments. Kind soundness finally
allows designers of type-level abstractions to join their term-level
colleagues in relying on the compiler to catch deficiencies before
they are discovered by their clients.

1. Introduction
Scalina is a purely object-oriented calculus that provides the formal
underpinning for our implementation of higher-kinded types [19] in
Scala [20]. Scalina introduces a number of novelties with respect
to earlier object-oriented calculi [16, 21, 10]. The most notable
improvement over the νObj calculus is that kind checking ensures
type applications never “go wrong”: we dub this property kind
soundness.

Traditionally, most object-oriented languages and the underly-
ing formalisms use a mix of FP-style and OO-style abstraction. The
former style is based on lambda abstraction and function applica-
tion, and OO-style abstractions are built using abstract members
and composition (via subclassing or mixin composition).

Java, for example, uses functional abstraction for methods and
classes, which may be parametric in types and values. Of course,
Java also supports OO-style abstraction: a class with an abstract
method abstracts from the implementation of that method. A sub-
class is expected to provide the concrete implementation.

Like νObj, Scalina is a purely object-oriented calculus: there
are no constructs for parameterisation. Yet, as we will demonstrate,
Scalina is able to express the same abstractions as, for example,
System F sub

ω [8, 23, 9], with the same safety guarantees.
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Listing 1. Expressing Iterable using parameterisation
trait Iterable[A, Container[X]] {
def map[B](f: A ⇒ B): Container[B]

}

trait List[A] extends Iterable[A, List]

The rest of this section elaborates on the problem statement
and gives some initial insight into our solution. Then, we get our
feet wet with Scalina’s syntax and intuitions in Section 2, before
delving deeper in the levels of terms (Section 3) and types (Section
4). The latter two sections discuss computation and classification
at the respective levels. We briefly motivate Scalina’s design and
position it in the design space in Section 5. In Section 6 we make
the relation between Scalina and System F sub

ω more precise. We
sketch the meta-theory in Section 7. Finally, we briefly discuss
related work (Section 8) before concluding in Section 9.

1.1 Kind soundness
Scala supports two styles of abstraction: the functional style uses
parameterisation, whereas abstract members represent the object-
oriented way. It is natural to ask whether one style can be used
exclusively. At first sight, the object-oriented style can encode the
functional one. We restrict the discussion to the technicalities of the
encoding; the impact on the programming experience is outside the
scope of this paper.

Scala’s abstract type members closely correspond to type pa-
rameters, and abstract type member refinement can be seen as the
object-oriented counterpart of type application. Abstract type mem-
ber refinement is a restricted form of mixin composition that can be
used to override abstract type members with concrete ones. How-
ever, it turns that out this encoding does not preserve the safety
properties that are ensured by parameterisation.

To make this concrete, Listing 1 uses parameterisation to ex-
press the well-known Iterable abstraction in Scala. The Iterable
trait (an abstract class) takes two type parameters: the first one

represents the type of the elements, and the second one abstracts
over the type constructor of the container. To denote that it ab-
stracts over a type constructor, the Container parameter declares
a formal type parameter X.

Listing 2 demonstrates the object-oriented style. Here, Iterable
abstracts over the type of its elements and the container us-

ing abstract members. The A type member is inherited from
TypeFunction1, and the Container type constructor parame-
ter is represented as an abstract type member that is bounded to
be a TypeFunction1. map’s result type is expressed by refining
Container’s abstract type member A so that it equals B.

So far, the encoding remained faithful to the original. However,
a discrepancy emerges when we encode an erroneous program. The
type application Iterable[A, NumericList] in Listing 3 is not



Listing 2. Encoding Iterable’s type parameters as members
trait TypeFunction1 { type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container{type A = B}
}

trait List extends Iterable { type Container = List }

Listing 3. NumericList: an illegal subclass of Iterable
trait NumericList[A <: Number]

extends Iterable[A, NumericList]

Listing 4. The encoding of NumericList eludes the type checker
trait NumericList extends Iterable {
type A <: Number
type Container = NumericList // Incorrect, but no

error reported!
}

allowed by the compiler, whereas we will see its encoding is ac-
cepted without warning. If it were not ruled out, map’s result type
could apply any type B to NumericList, while it accepts only sub-
types of Number. By ruling out Iterable[A, NumericList],
the compiler prevents this error from ever happening.

Unfortunately, the encoding does not preserve this property,
which we call “kind soundness”. This is illustrated by Listing
4, which is considered a valid Scala program. The compiler
silently accepts this program, even though we could never com-
plete its implementation (at some point we will have to instantiate
a NumericList for an arbitrary type of elements, and the com-
piler will catch our mistake). To relate this to type soundness, the
value-level equivalent of this oversight would be to allow passing a
function of type, e.g., Number ⇒ Any to a function that expects a
Any ⇒ Any.

Note that this indulgence does not imply type unsoundness,
as these erroneous types cannot be instantiated. Nonetheless, we
regard it as a shortcoming of the compiler that these vacuous
intersection types are allowed to slip by unnoticed. Even though
they are prevented from being instantiated, they could be unmasked
earlier.

To motivate this desire for early detection of these inconsisten-
cies, consider the analogy with abstract classes. Suppose classes
would be allowed to be abstract implicitly, so that accidental ab-
stract classes would not be discovered until a client attempts to in-
stantiate them. However, this situation is considered undesirable by
most languages, so that an abstract class must be marked as such
explicitly. This eliminates the possibility that the programmer sim-
ply forgot to implement a method.

Not detecting erroneous type applications, which manifest
themselves as intersection types that unexpectedly do not have
any instances, has the same effect as allowing any class to be ab-
stract implicitly: the error is detected eventually, but it could have
been signalled earlier. Even though other uses of intersection types
might sensibly result in empty types, we do not consider this to be
one of them.

This kind unsoundness has its roots in the νObj calculus [21],
which allows abstract type members to be refined covariantly, thus

Listing 5. Using un-members to recover kind soundness
trait TypeFunction1 { deferred type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container/{type A = B}
}

trait List extends Iterable { type Container = List }

trait NumericList extends Iterable {
deferred type A <: Number // error: covariant change

not allowed
type Container = NumericList

}

NumericList <: TypeFunction1, so that the encoding of the
erroneous type application results in a valid program.

We recover early error detection in Scalina by differentiating co-
variant and contravariant members, instead of assuming they all be-
have covariantly. This distinction corresponds to the fact that some
members abstract over input, whereas others represent the output
of the abstraction. Input members should behave contravariantly,
like the types of function arguments, whereas covariance is required
for output members, which correspond to a function’s result type.
With this distinction, a purely object-oriented calculus can encode
functional-style abstraction with the same safety guarantees.

If we look at the problem from the point of view of the clients of
an abstraction, we distinguish external and internal clients. External
clients supply information to an abstraction without knowing ex-
actly which subtype of the abstraction they are dealing with. There-
fore, the constraints on these missing pieces of information must
only be weakened in subtypes. Internal clients, which are tightly
related by subtyping, should be able to strengthen the result of the
abstraction.

Thus, Scalina complements Scala’s covariant type members
with contravariant ones, which we shall call “un-members”. List-
ing 5 shows a pseudo-Scala rendition of the encoding, where un-
members are indicated using the deferred keyword. They are
made concrete by external clients using the ... /{ ... } con-
struct.

Since the A type member is an input to the abstraction, it must
behave contravariantly, so that NumericList is not allowed to
strengthen the bound on the A un-member that it inherited from
Iterable.

1.2 Methodology
To summarise the above example, a programmer should use un-
members to model the input to an abstraction. This corresponds to
the arguments of a method or the type parameters of a generic class.
Normal members are used to define the result of the abstraction.

Note that un-members and abstract members impose an order-
ing discipline. A type un-member that classifies a value un-member
must be refined before the value can be supplied. This corresponds
to a polymorphic value in functional programming. Furthermore,
types may contain abstract members, but objects must not. There-
fore, an object cannot be created until the abstract members have
been made concrete.

The example in Section 2.3 will illustrate these points in more
detail.

1.3 Contributions
Functional abstraction clearly distinguishes a function’s arguments
from its result. In the object-oriented setting, a similar distinction



t , u ::= term
| x variable
| t . l selection
| t / { cm } refinement
| newT instantiation

TT ::= type
| TT #L selection
| TT / { cm } refinement
| { x J : TT K ⇒ mi

i } structural type
| TT1 &TT2 intersection type
| p . type singleton type
| Any top type
| Nothing bottom type
| �TT necessarily TT

T , S ::= type or un-type
| TT type
| Un [TT ] un-type

m ::= member
| val l : T J = t K value member
| typeL : K J = T K type member

cm ::= refinement member
| val l = t value member
| typeL = T type member

Figure 1. Scalina Syntax (terms and types)

must be made for abstract members. We introduce un-members,
which safely model the input to an abstraction, and re-use tradi-
tional members to represent the result of the abstraction. Thus, an
object with un-members may be thought of as a curried function
that takes its keyword arguments in any order. The members of
such an object represent its results.

We study purely object-oriented abstraction in a dependently
typed, three-level calculus that uses the same concepts for abstrac-
tion and computation on terms and types. As in the νObj calculus,
function application is decomposed into refinement and member
selection. Because the level of types is modelled after the level of
terms, a type-level function is modelled as a type with type un-
members.

The distinction between un-members, which behave contravari-
antly, and normal, covariant, members, is instrumental in proving
soundness on the level of types and kinds. Due to the symmetric
design of our calculus, the soundness proofs proceed by similar ar-
guments at both levels.

2. Scalina: Syntax and Intuitions
Scalina is a three-level object-oriented calculus: we distinguish
terms (objects), types, and kinds. Terms are for computation, types
are used for classification as well as computation, and the role of
kinds is strictly limited to classification. Computation is performed
using two mechanisms: member selection and member refinement.
Classification is more intricate, ranging from merely structural de-
scriptions of the classified entities over nominal classification, the
intersection of classifiers, singletons, and strictly empty classifiers.

2.1 Syntax
Figures 1 and 2 outline Scalina’s syntax. We use ‘J . . . K’ to denote
the optionality of ‘. . . ’.

The term level consists of member selection, member refine-
ment, and instantiation. Analogously, a type may be a type selec-
tion, a refinement or a structural type. A structural type binds the
self variable x in the members it includes; if the type of the self
variable is not specified, it is assumed to be the structural type it-
self. We use the meta-variable R to refer to a structural type. Addi-

tionally, a type may be an intersection type, a singleton type (that
depends on a path), the top or the bottom of the subtype lattice, or
an un-type. Finally, we introduce �T , which stands for the result
of refining all of T ’s un-members with unknown terms and types.
We will discuss this construct in more detail in Section 2.2.3.

Figure 2 defines the shape of kinds, paths, values, and the typing
context Γ. A path is a chain of member selections that starts with a
variable or an instantiation expression new T, which represents an
object. We mainly restrict the shape of paths to simplify the proofs
in the meta-theory.

2.2 Core concepts
Before describing the rules that define computation and classifica-
tion in Scalina, we build up intuitions about the core concepts that
underlie these mechanisms.

2.2.1 Members and un-members
Members are the liaisons between the different levels: a type de-
scribes the value members that may be selected on the terms it
classifies, as well as the type members that may be selected on the
type itself. The description of a member consists of the label of the
member, the classifier of the entity it stands for and – if the member
is concrete – the actual entity it is bound to (its right-hand side, or
RHS). For value members, the classifier is a type and the RHS is
a term, and type members specify the kind that classifies the type
they are bound to.

Scalina’s un-members are a more radical departure from Scala.
Un-members are used to encode parameterisation: they are place-
holders for members that must be provided by the client of the ab-
straction, much like the arguments of a function. Un-members are
turned into normal members using member refinement, which cor-
responds to passing arguments to a function. An entity with multi-
ple un-members is the equivalent of a curried function: refining one
of the un-members results in an entity with one less un-member to
be refined. Once all un-members have been refined, the member
representing the function’s result may be selected to complete the
application. This constitutes the essence of computation – on terms
as well as types – in Scalina.

Members and un-members can be seen as the two halves of
the contract specified by a classifier: members are available to the
client, whereas it must supply the un-members. Note that abstract
members have different semantics from un-members: an abstract
member is made concrete using composition within a subtyping
hierarchy, while an un-member is to be supplied by an external
client. A type with abstract members cannot be instantiated. An
abstract type can however be constrained (using the kind Concrete
(R)) so that it does not contain any abstract members.

2.2.2 Terms
The canonical form of a term is an object. For syntactic economy,
and since Scalina does not model effects yet, an object is repre-
sented by the instantiation of a type without abstract members.
Conceptually, an entity is just a vessel for denoting to which en-
tity each of its members – as described by the entity’s classifier
– is bound. Thus, an object contains mappings (from a label to a
term) for all of the members specified in its type. Operationally,
un-members can be thought of as members that are simply absent
from this mapping.

2.2.3 Types
If, on the term level, parameterising over functions is useful,
doing the same on the level of types sounds like an obvious
thing to do.

Erik Meijer



KK ::= kind
| In (T1 , T2 ) interval kind
| Struct (R ) structural kind
| Nominal (R ) nominal kind
| Concrete (R ) concrete kind

K ::= kind or un-kind
| KK kind
| Un [KK ] un-kind

p ::= path
| x variable
| p . l selection
| newT instantiation

v ::= value
| newT instantiation

Γ ::= typing context
| ∅
| Γ , x : T assume x has type T

Figure 2. Scalina Syntax (kinds, etc.)

To generalise Meijer’s motivation for higher-kinded types [18],
rephrasing in our terminology: “If, on the term level, abstracting
over terms that themselves abstract over terms is useful, doing the
same on the level of types sounds like an obvious thing to do.”
Scalina manifestly supports this view by using the same abstraction
mechanism on both levels: entities that abstract over other entities
(using un-members) are themselves first-class entities.

Types play a dual role: besides computation, their main purpose
is classifying terms. As explained in the introduction, types differ
from terms in that they may contain abstract members for abstrac-
tion towards subtyping clients. Another distinction with the term
level is that we intend to tone down type-level computation so that
it becomes decidable (this is future work).

Types classify terms by specifying the labels and the types of
the members that may be selected on these terms. A structural type
classifies all terms that have the prescribed members. Note that
we use kinds to distinguish nominal types from structural ones.
An intersection type is inhabited by the terms that inhabit both its
constituent types. A singleton type classifies exactly one object and
an un-type does not classify any terms at all. An un-type is used as
the classifier of a value un-member.

Type-level computation uses the same concepts as computation
at the term level. However, because types may contain abstract
members, we must be more careful. For soundness, type member
selection is only allowed on types that (eventually) consist solely
of concrete members, although the exact RHS need not be known.
Type selection on a singleton type is always safe, even if the
selected type member’s right-hand side is not known statically. As
long as it is not an un-member, the object that the singleton type
depends on, could not have been created unless that member was
concrete.

In Scala, these abstract type members may only be selected on
singleton types. Scalina generalises this to the notion of concrete
types, so that abstract type members may be selected on any type
that necessarily contains only concrete type members, which natu-
rally includes singleton types.

Similarly, it is always safe to assume that the type of the self
variable does not contain any un-members: the self-variable can
only be accessed as a consequence of an external member selection,
which in turn is not allowed on objects with un-members. To exploit
this invariant, we introduce the type �T , which stands for the result
of refining all T ’s un-members. We shall illustrate this with an
example in Section 2.3

The canonical form of a type is computed by performing all
allowed member selections. This corresponds to the β-normal form
in functional calculi.

2.2.4 Kinds
Kinds are only used for classifying types: they denote which mem-
bers may be selected on the types they classify. An interval kind
takes over the role of the bounds of a Scala-style abstract type
member: In(S, T) is inhabited by types that are subtypes of T
and supertypes of S.

Struct(R) is inhabited by types that have at least the members
specified in R. These members must be well-formed under the as-
sumption that the self variable has the declared self type. Nominal
(R) is similar to Struct(R), except that it serves as a marker for
concrete type bindings that represent classes: normalisation should
not replace a type selection of this kind with its right-hand side.

Finally, T has kind Concrete(R) if it has at least the members
specified in R, and none of these are abstract. Furthermore, �T
must be a subtype of the self type declared in R, so that such a type
may be instantiated (if it is not a singleton type) or be used as the
target of type member selection.

2.3 Example: polymorphic lists
Listing 6 implements polymorphic lists with map to illustrate
Scalina’s support for parametric polymorphism and higher-order
functions.

First, we introduce a little syntactic sugar.

• The kind ? should be expanded to Struct({x ⇒ }),
• the type p.L is shorthand for p.type#L,
• the following type members are easily expanded:

type L = R becomes type L : Struct(R) = R,

type L ≺ T means type L : Nominal(R) = T, where
R is the expansion of T to its least structural supertype (by
the ≺≺ relation defined in Fig. 7).

Since type members must always be nested in other types, our
program is a term that instantiates the structural type that represents
our “universe” (hence the u as the self variable). The type u.type#
Fun1, or using syntactic sugar, u.Fun1, corresponds to a top-level
class in Scala.

The first abstraction is a polymorphic unary function. Fun1 is
a nominal type that expands to a structural type with self variable
self, whose type is assumed to be the nominal type itself, with all
its un-members refined. This special self type is crucial: without it,
the body of the function could not access its arguments, as these
would be considered un-members. In this example, �u.Fun1 ex-
pands to the structural type {x ⇒ type T1: ?; type T2: ?;
val v: x.T1; val apply: x.T2}

Fun1 takes two type arguments: the type of its value argument
(T1) and the type of its result (T2). It also requires one value
argument (v). These arguments are un-members, which must be
provided by the caller of the function. The abstract apply member
models the function’s body. It must be made concrete before an
actual function value can be created.

List abstracts over the type of its elements (Element) and
declares one abstract method, map. We define a structural type,
map, and an abstract value member with the same name. This
way, it becomes more convenient to make this member concrete,
subclasses of List may simply use an instance of the composition
of map with another type that makes the apply method concrete.

The implementation of the map “method” in Nil simply returns
a new instance of Nil with the appropriate element-type. In Cons,
the result is another cons cell that applies the supplied function to
the head of the list and that recurses on the tail.



Listing 6. Polymorphic List in Scalina
new { u ⇒
type Fun1 ≺ {self : � u.Fun1 ⇒
type T1 : Un[?]
type T2 : Un[?]
val v : Un[self.T1]
val apply : self.T2

}

type List ≺ {self : � u.List ⇒
type Element : Un[?]
type map = { selfMap : self.map ⇒
type Tgt : Un[?]
val fun: Un[u.Fun1/{type T1=self.Element}

/{type T2=selfMap.Tgt}]

val apply: u.List/{type Element=selfMap.Tgt}
}

val map: self.map
}

type Nil ≺ u.List & {self : � u.Nil ⇒
val map : self.map =
new self.map & { s : self.map ⇒
val apply: u.List/{type Element = s.Tgt}
= new (u.Nil /{type Element = s.Tgt})

}
}

type Cons ≺ u.List & {self : � u.Cons ⇒
val hd: self.Element
val tl: u.List/{type Element=self.Element}

val map : self.map =
new self.map & { s : � self.map ⇒
val apply: u.List/{type Element=s.Tgt}
= new u.Cons/{type Element=s.Tgt} & {sc ⇒

val hd: s.Tgt
= (fun/{val v=self.hd}).apply

val tl: u.List/{type Element=s.Tgt}
= (self.tl.map

/{type Tgt=s.Tgt}
/{val fun=s.fun}).apply

}
}

}
}

Note that hd and tl model constructor arguments: since they
are required for an object of this type to be created, we use abstract
members and not un-members.

Listing 7 shows a Scala rendition of the example that stays as
close as possible to the Scalina version, using an idiomatic mix of
functional and object-oriented abstractions.

3. Terms
3.1 Computation
Before we turn to the evaluation rules, we briefly consider how
members are looked up at run time. For now, type members are
statically bound and the role of types during evaluation is strictly
limited to mapping the labels of the members of an object to terms.
However, we anticipate support for virtual classes, which requires
run-time lookup of types. In future work, we will prove that, for the
current system, our approach to lookup is equivalent to statically
expanding types that are instantiated to mappings of labels to terms,
with the corresponding trivial run-time lookup function.

Listing 7. Parametric List in Scala
abstract class List[Element] {
def map[Tgt](fun: Element ⇒ Tgt): List[Tgt]

}

class Nil[Element] extends List[Element] {
def map[Tgt](fun: Element ⇒ Tgt) = new Nil[Tgt]

}

abstract class Cons[Element] extends
List[Element] { self ⇒

val hd: Element
val tl: List[Element]

def map[Tgt](fun: Element ⇒ Tgt) = new Cons[Tgt]{
val hd: Tgt = fun(self.hd)
val tl: List[Tgt] = self.tl.map[Tgt](fun)

}
}

T ≺ R T expands to R at run time

T 3 L 7→ S \\ x
[ x 7→ T ]S ≺ R

T #L ≺ R
LU_SEL

T ≺ {x : _ ⇒ m1 ..mn}
∀i ∈ 1..n. m′

i = refineIf(mi , cm)

T /{cm} ≺ {x : S ⇒ m′
1 ..m′

n}
LU_RFN

R ≺ R
LU_REFL

T ≺ {x ⇒ m1 ..mn}
T ≺ {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

LU_SELFX

T1 ≺ {x : S1 ⇒ mi
i}

T2 ≺ {x : S2 ⇒ m′
j

j}
m′′

k

k
= mi

i ] m′
j

j

T1 &T2 ≺ {x : S2 ⇒ m′′
k

k}
LU_MIX

T ≺ R

(newT) . type ≺ R
LU_SING

p . type 3 l 7→ p′ \\ x
([ x 7→ p ] p′) . type ≺ R

p . l . type ≺ R
LU_SINGX

Figure 3. Type Expansion for Run-time Lookup

To look up a member at run time, we use the unfold relation (≺)
defined in Fig. 3, which relies on the following helper relations:
T 3 ll 7→ e \\ x denotes that T expands to a structural type
that contains a member with label ll and right-hand side e in which
the self variable x is bound. ll stands for either a term- or a type-
label, and e is a term or a type. Similarly, T 3un ll is derivable
if T has an un-member with the specified label: it expects this un-
member to be refined.

Furthermore, we factor out what it means to refine a single
member: refineIf(m ′, cm) can be seen as a function that returns
the refinement of the un-member m ′ with the cm’s RHS if their
respective labels are the same, otherwise it simply returns m ′.
Similarly, m = refines(m ′, cm) holds if m ′ and cm have the
same label and m is the result of refining m ′ with cm . Finally,
intersecting structural types corresponds to taking the union (]) of



t ⇒ t ′ t evaluates to t ′ in a single step

T 3 l 7→ p \\ x

newT . l ⇒ [ x 7→ newT ] p
E_SEL

l ≡ label cm
T 3un l

(newT) /{cm} ⇒ new (T /{cm})
E_RFN

T 3 l 7→ t \\ x
[ x 7→ newT ] t ⇒ t ′

U ≡ (newT) . l . type

newT ⇒ new (T & {_ ⇒ val l : U = t ′})
E_CTXMEM

t ⇒ u

t ′ /{val l = t} ⇒ t ′ /{val l = u}
E_CTXRFNRHS

t ⇒ u

t /{cm} ⇒ u /{cm}
E_CTXRFNTGT

t ⇒ u

t . l ⇒ u . l
E_CTXSELTGT

Figure 4. Term Evaluation

the corresponding sets of members, with concrete members in the
right type overriding corresponding members in the left one.

The actual lookup proceeds by expanding a type to the corre-
sponding structural type, after which looking up the required la-
bel is easy. The only tricky rule in the definition of the expansion
relation ≺ is LU_SINGX. During evaluation, all types are of the
shape (new T).l1. ... .ln.type. To reduce a selection p.l to
the base case, which is handled by LU_SING, we must lookup l
in p.type and inductively expand the resulting singleton type. To
avoid extra complexity in the meta-theory, we factor in the evalua-
tion rule for value selection instead of using evaluation directly.

The small-step evaluation relation that defines Scalina’s opera-
tional semantics [31], is shown in Fig. 4. It consists of two eval-
uation rules and four congruence rules. The first evaluation rule,
E_SEL, rewrites a member selection on an object to the RHS of
that member after replacing the self variable by the object that was
the target of the selection. The hypothesis that the label must be
present in the object is represented as a lookup on the type. The
side-condition that the member’s RHS must be a path is crucial for
proving type preservation: a path may only be replaced by a path.
For now, all terms are paths in Scalina. However, in anticipation
of adding effects to the calculus, we already distinguish paths and
arbitrary terms.

E_RFN deals with refinement: it checks that the refined member
was indeed an un-member (it was missing from the object), and
then adds it to the object by refining the type that is used to track
its members. The side-condition that l was an un-member is not
necessary for proving type soundness, as the typing rules ensure
that a well-typed term always meets it. We include it so that we
can prove that un-members are never refined more than once by
seeing that a program gets stuck if it violates that rule. However, by
progress, well-typed terms never get stuck.

The only non-trivial congruence rule, E_CTXMEM, performs
evaluation under member bindings, which can be thought of as run-
ning the constructor. This congruence rule is necessary to fulfil the
side-condition of the rule for member selection. The shape of the
type U is a technicality required by the proof of type preservation.
It can be seen as an artefact of our using full-blown types for sim-
ply tracking the members of an object. The remaining congruence
rules are standard.

Γ ` t : T t has type T

Γ ` p : {x ⇒ val l : T}
T not an un-type
Γ ` p . l : [ x 7→ p ]T

T_SELPATH

Γ ` t : {x ⇒ val l : T}
x /∈ FV(T)
T not an un-type

Γ ` t . l : T
T_SEL

Γ ` t : T
T ≡ {x : S ⇒ m1 ..mn}
∃i ∈ 1..n. m′ = refines(mi , cm)
Γ , x : S ` m′ WF
x /∈ FV( cm)

Γ ` t /{cm} : T /{cm}
T_RFN

Γ ` T ≺≺ R
Γ ` R : Concrete (R)
T not a singleton type
T not of shape �T ′

Γ ` newT : T
T_NEW

Γ ` p : R

Γ ` p : p . type
T_SING

Γ ` t : T
Γ ` T <:S

Γ ` t : S
T_SUBSUME

Figure 5. Term Classification

3.2 Classification
Figure 5 defines the shape of well-typed terms. When checking a
value member selection, we treat the case where the target of the
selection is a path (T_SELPATH) differently from when it is not
(T_SEL). Suppose we treated both cases equally. Consider e.g.,
t: {x ⇒ val a: x.b.type = x.b; val b: Any}, so that
t.a : t.b.type. Now, for the singleton type t.b.type to be
well-formed, t must be a path. Therefore, the selection is not al-
lowed if this is not the case. If the declared type of the member
does not rely on the self variable, the target need not be a path.

Note that the rules for member selection rely on subsumption to
discard all other members in the type of the target (as well as the
selected member’s RHS). This is not just a matter of cosmetics: this
formulation ensures that the type of the target does not contain any
other un-members, as they cannot be forgotten by subsumption. In
terms of function types, the underlying intuition is that subsump-
tion cannot change the number of arguments that a function takes.
We will discuss this in more detail in the section on subtyping.

T_RFN classifies member refinement – in a sense, the dual of
member selection. Essentially, this corresponds to checking the
type of the argument while typing function application. This check
is performed by requiring that there is a member with the same label
as cm, and that the result of refining this member is well-formed.

We cannot use subsumption in this rule as the target that is being
refined, may have several un-members. The type of refining a term
is a refinement of the type of the term that is refined. Note that this
type refinement could not be replaced by an intersection type. For
such a type T&S to be well-kinded, S’s members must conform to
T ’s, but here, T contains an un-member whereas S does not, and
subtyping can never relate un-members to regular members.

According to T_NEW, new T is well-typed with type T if
T statically expands to the structural type R (by ≺≺, defined in
Fig. 7), where R is of kind Concrete(R). The remaining side



Γ ` T  T ′ T normalises to T ′

Γ ` T 3 typeL : K = S \\ x
K not nominal
Γ ` [ x 7→ T ]S  S ′

Γ ` T #L  S ′ N_SEL

Γ ` T  {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m′

i = refineIf(mi , cm)

Γ ` T /{cm}  {x : S ⇒ m′
1 ..m′

n}
N_RFN

Γ ` T  {x ⇒ m1 ..mn}
Γ ` T  {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

N_SELFX

Γ ` T1  {x : S1 ⇒ mi
i}

Γ ` T2  {x : S2 ⇒ m′
j

j}
m′′

k

k
= mi

i ] m′
j

j

Γ ` T1 &T2  {x : S2 ⇒ m′′
k

k}
N_MIX

Γ ` p : q . type

Γ ` p . type  q . type
N_SNG

Figure 6. Type Normalisation

conditions rule out degenerate cases. It is necessary to expand T to
R and then check R has kind Concrete(R) because just checking
that T : Concrete(R), implies that a subset R of T is safe to be
instantiated, but not necessarily T itself.

Finally, a path has the corresponding singleton type if it is
well-typed using the other rules (we assume finite derivations).
Subsumption gives a well-typed term a less precise type.

4. Types and Kinds
4.1 Computation
Type normalisation, as shown in Fig. 6, is the “operational seman-
tics” of the type level. To compute the normal form of a type, all
allowed type member selections are performed, refinements and
compositions of structural types are normalised to the correspond-
ing structural type, and paths are safely rewritten if they are stati-
cally known to refer to the same object.

The selection of a type member with declared kind Nominal(R)
is in normal form: these bindings must not be crossed. Hence
the side-condition in N_SEL. If this condition were omitted, nor-
malisation would no longer be kind-preserving, as a type of kind
Nominal(R) would be replaced by a type of kind Struct(R),
which is not a subkind of Nominal(R). By analogy to the term
level, normalisation checks only the minimal side conditions, a
separate theorem proves that it is kind-preserving.

Type expansion includes type normalisation, but is more aggres-
sive: it replaces a nominal type binding with its (structural) right-
hand side and widens singleton types. This is needed when calcu-
lating all the members in a type. Since type expansion must yield
the least structural supertype of a type, we cannot use typing in the
rules X_SING*, as this may invoke subsumption.

X_SINGVAR expands a singleton type that depends on a
variable, that must therefore be in Γ. X_SINGNEW handles the
other bases case, similar to run-time expansion of types. Finally,
X_SINGSEL peels one layer of member selection from the path by
approximating the outermost selection by its declared type.

X_NCSRY expands �T to the expansion of T , after essentially
stripping all the Un[...]’s from the declared types and kinds of
its members. It achieves this by “pretending” to refine every un-

Γ ` T ≺≺ R T expands to the structural type R

Γ ` T 3 typeL : K = S \\ x
Γ ` [ x 7→ T ]S ≺≺ R

Γ ` T #L ≺≺ R
X_SEL

Γ ` T ≺≺ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m′

i = refineIf(mi , cm)

Γ ` T /{cm} ≺≺ {x : S ⇒ m′
1 ..m′

n}
X_RFN

Γ ` R ≺≺ R
X_REFL

Γ ` T ≺≺ {x ⇒ m1 ..mn}
Γ ` T ≺≺ {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

X_SELFX

Γ ` T1 ≺≺ {x : S1 ⇒ mi
i}

Γ ` T2 ≺≺ {x : S2 ⇒ m′
j

j}
m′′

k

k
= mi

i ] m′
j

j

Γ ` T1 &T2 ≺≺ {x : S2 ⇒ m′′
k

k}
X_MIX

x : T ∈ Γ
Γ ` T ≺≺ R

Γ ` x . type ≺≺ R
X_SINGVAR

Γ ` T ≺≺ R

Γ ` (newT) . type ≺≺ R
X_SINGNEW

Γ ` p . type 3 val l : T _ \\ x
Γ ` [ x 7→ p ]T ≺≺ R

Γ ` p . l . type ≺≺ R
X_SINGSEL

Γ ` T ≺≺ {x : S ⇒ m1 ..mh}
∀i ∈ 1..n. m′

i = refineIf(mi , _)
Γ ` �T ≺≺ {x : S ⇒ m′

1 ..m′
n}

X_NCSRY

Γ ` T 3 m \\ x

Γ ` T ≺≺ {x : _ ⇒ m1 ..mn}
∃i ∈ 1..n. mi ≡ m

Γ ` T 3 m \\ x
X_LU

Figure 7. Type Expansion

member with an unknown right-hand side, so that un-members
essentially become abstract members.

4.2 Subtyping
Subtyping is mostly standard; the main novelties result from the
interaction with un-members. Un-types introduce contravariance
(by ST_UN), thus deviating from the norm of covariance. Since
member subtyping is covariant, an un-member with declared type
Un[T ] may only be overridden by an un-member with a declared
type that is a subtype of Un[T ], thus it has the shape Un[T ′]
with T <: T ′. This means the overriding member weakens the
restriction on the term that must be supplied by the client.

If a type S expands to a type T , then surely it is a subtype
of that type T . Expanding S can be thought of as computing a
least structural supertype of S, following type selections, crossing
nominal type bindings and widening singleton types. Similarly,
type equality (∼=) – the least reflexive, symmetric, and transitive
relation that includes normalisation – is included (by ST_EQ).

The rules ST_ABS_UPPER and ST_ABS_LOWER incorporate
the declared kinds of abstract type members into the subtyping
relation.



For simplicity, the current version of Scalina does not model
variance for type constructors, which explains why ST_INVAR
considers type un-members to be invariant.

Besides the usual width- and depth-subtyping, subtyping of
structural types must take extra care to never forget any un-
members during subsumption. Intuitively, subsumption allows the
client of a type to relax the expectations it has of that type, but it
should not result in the client having fewer obligations.

Subtyping of members is defined in Fig. 10. Value members
always behave covariantly; a type member becomes invariant as
soon as it is made concrete. This is related to the fact that Scalina
does not admit late-binding for type members.

To relate this to subtyping of function types in System F sub
ω ,

a type of the shape S → T can only be a subtype of a type with
the same shape, i.e., a function of the same arity. In our system,
the number of un-members denotes the “arity” and types can only
be subtypes if they have the same un-members. Any constitutes the
only safe exception to this rule. It is safe for a structural type with
un-members to be a subtype of Any, as no members can be selected
on a term that is only known to have type Any.

Similarly, if subtyping forgets either constituent of an inter-
section type, any un-members in the forgotten type must still be
present in the remaining one. For example, suppose we have a term
of type {x: S ⇒ val a: Un[T]; val b: T=x.a} & {x : S
⇒ val b : T}, with S = {x ⇒ val a: T; val b: T}. If

we were allowed to subsume the term’s type to {x : S ⇒ val
b : T}, we could access b before a had been refined.

For brevity, we use m deferred to check that m’s classifier is
of the shape Un[T] or Un[K].

4.3 Classification
For the constructs that are shared by terms and types, classification
is largely analogous. The main difference is that we have to be
careful to only select types that will eventually become concrete.
For objects, this is always the case, but types with abstract type
members are still types. Whereas a term with type T is known
to contain concrete versions of all members (not including un-
members) in T , a type with kind Struct(R) may contain abstract
members. Therefore, we introduce the kind Concrete(R) that
classifies only types with only concrete members.

The kind of a structural type reflects the type members that may
be selected on that type. To be well-kinded according to K_R,
the members of a structural type must be well-formed under the
assumption that the self variable has the declared self type. The
well-formedness judgement for members is defined in Fig. 11.

The intersection of two structural types is classified by the kind
that tracks the union of their members. Note that the self type of
the overriding type (the right-most constituent) must be a subtype1

of the type containing the overridden members. Each overriding
member must be a submember of the corresponding member in T1.

There are two ways for deriving that a set of members of a type
are concrete. The easy way is if that type is a singleton type. Other-
wise, for a type T to be classified as having a certain set of concrete
members m1..mn, it must have a structural kind with declared self-
type S and �T <: S. Naturally, this structural kind must denote
the m1..mn as concrete. However, due to subsumption, this set of
members may be a subset of the actual members of T . Nonetheless,
any type member in R may safely be selected: it will eventually be-
come concrete.

Given the notion of types with concrete members – which was
not necessary at the lower level since terms may not contain ab-

1 This is a slight simplification of νObj, where S1 need not be a subtype of
S2. νObj’s composition operator requires the self type for the composition
to be specified explicitly. This new self type must be a subtype of the Si.

Γ ` T <:T ′ T is a subtype of T ′

Γ ` S <:T
Γ ` T : K
Γ ` T <:T ′

Γ ` S <:T ′ ST_TRANS

Γ ` S : K
Γ ` S ≺≺ R

Γ ` S <:R
ST_EXP

Γ ` S : K
Γ ` T : K
Γ ` S ∼= T

Γ ` S <:T
ST_EQ

Γ ` T 3 typeL : K \\ x
Γ ` K <: In (_ , S)

Γ ` T #L<:S
ST_ABS_UPPER

Γ ` T 3 typeL : K \\ x
Γ ` K <: In (S , _)

Γ ` S <:T #L
ST_ABS_LOWER

Γ ` T1 <:T2

Γ ` T1 /{typeL = U}<:T2 /{typeL = U}
ST_INVAR

Γ ` S <:S2

∀j ∈ 1..k . ∃i ∈ 1..n. (mi
label
≡ m′

j ∧ Γ ` mi <:m′
j )

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label
≡ m′

j )

Γ ` {x : S ⇒ m1 ..mn}<: {x : S2 ⇒ m′
1 ..m′

k}
ST_R

Γ ` T1 ≺≺ {x : _ ⇒ m1 ..mn}
Γ ` T2 ≺≺ {x : _ ⇒ m′

1 ..m′
k}

∀i ∈ 1..k . (m′
i deferred ⇒ ∃j ∈ 1..n. m′

i

label
≡ mj )

Γ ` T1 &T2 <:T1
ST_IELIMR

Γ ` T1 ≺≺ {x : _ ⇒ m1 ..mn}
Γ ` T2 ≺≺ {x : _ ⇒ m′

1 ..m′
k}

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label
≡ m′

j )

Γ ` T1 &T2 <:T2
ST_IELIML

Γ ` T <:T1

Γ ` T <:T2

Γ ` T <:T1 &T2
ST_IINTRO

Γ ` T : K
T not an un-type

Γ ` T <:Any
ST_ANY

Γ ` T : K

Γ ` Nothing <:T
ST_NOTHING

Γ ` T <:S

Γ ` Un [S ] <:Un [T ]
ST_UN

Figure 8. Subtyping



Γ ` T : K T has kind K

R ≡ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. Γ , x : S ` mi WF
m1 ..mn noDuplicates

Γ ` R : Struct (R)
K_R

Γ ` {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn} : K

Γ ` {x ⇒ m1 ..mn} : K
K_RX

Γ ` T1 : Struct ({x : S1 ⇒ mi
i})

Γ ` T2 : Struct ({x : S2 ⇒ m′
j

j})

∀i ∈ 1..n. ∀j ∈ 1..k . (mi
label
≡ m′

j ⇒ Γ ` m′
j <:mi)

m′′
k

k
= mi

i ] m′
j

j

Γ ` S2 <:S1

Γ ` T1 &T2 : Struct ({x : S2 ⇒ m′′
k

k})
K_MIX

Γ ` T : Struct ({x : S ⇒ m1 ..mn})
Γ ` �T <:S
∀i ∈ 1..n. mi nonAbstract

Γ ` T : Concrete ({x : S ⇒ m1 ..mn})
K_CONCRETE

Γ ` p : T
Γ ` T : Struct ({x : S ⇒ m1 ..mn})

Γ ` p . type : Concrete ({x : S ⇒ m1 ..mn})
K_SING

Γ ` p . type : Concrete ({x ⇒ typeL : K})
Γ ` p . type#L : [ x 7→ p ]K

K_SELPATH

Γ ` T : Concrete ({x ⇒ typeL : K})
x /∈ FV(K)

Γ ` T #L : K
K_SEL

Γ ` T : Struct ({x : S ⇒ m1 ..mn})
∃i ∈ 1..n. m′ = refines(mi , cm)
Γ , x : S ` m′ WF
m′′

1 ..m′′
n = m1 ..mn ] m′

x /∈ FV( cm)

Γ ` T /{cm} : Struct ({x : S ⇒ m′′
1 ..m′′

n })
K_RFN

Γ ` T : K1

Γ ` K1 <:K2

Γ ` T : K2
K_SUBSUME

Γ ` Any : Struct ({x ⇒ })
K_ANY

Γ ` R : Struct (R)

Γ ` Nothing : Struct (R)
K_NOTHING

Γ ` T : K

Γ ` Un [T ] : Struct ({x ⇒ })
K_UN

Figure 9. Classifying Types

Γ ` m <:m′ m is a submember of m′

Γ ` T <:T ′

Γ ` val l : T _ <:val l : T ′ _
SM_VAL

Γ ` K <:K ′

Γ ` typeL : K _ <: typeL : K ′ SM_TYPEA

Γ ` typeL : K = _ <: typeL : K = _
SM_TYPEC

Figure 10. Subtyping for members

stract members – type member selection is classified analogously
to value member selection. Type refinement is almost literally the
same as at the term level, as is subsumption.

Finally, the top and the bottom of the subtype lattice must be
classified, as well as un-types. Any, and certainly Nothing, are
not essential to the type system. However, Any is needed to be
able to select a member on the universe (the top-level object): that
member must have a type that does not depend on the universe’s
self variable, but all user-defined types are (indirectly) selected
on the universe’s self type. Since Any exists outside of the user-
defined universe, it can serve this purpose. An alternative would
be to introduce another variable binding construct, such as let.
Nothing is used as the default lower bound of the interval kind. It
may be given the same kind as any well-kinded structural type.

4.4 Subkinding
Subkinding (Fig. 12) introduces contravariance for un-kinds (SK_UN),
so that type un-members conform contravariantly. Other than that,
the relation defines a simple lattice, with the interval kind at the
top.

A nominal type can be subsumed to a structural one (SK_NOM)
– but not vice versa! A concrete type is also a structural one
(SK_CONC). A structural type that includes all the members in
R, is thus in the interval (Nothing, R) (SK_STRUCT).

Interval inclusion gives rise to subkinding (SK_CTX_IN). The
kinds that classify structural types and concrete types have simi-
lar subsumption properties based on subtyping (SK_CTX_CONC,
SK_CTX_STRUCT).

5. Design Space
After introducing Scalina in detail, we look at the bigger picture by
briefly positioning its abstraction mechanisms in the design space.
Scalina’s main goal is to provide the essential features to model an
object-oriented language – such as objects with named members,
mutual recursion through the self variable, and mixin composition
– while also allowing functional concepts to be encoded with the
same safety guarantees as in functional calculi.

For an expedient exploration of the design space of abstraction
mechanisms, we shall restrict ourselves to investigating the instan-
tiations of the following question: “Is a term/type that abstracts
from a term/type using a parameter/an abstract member a first-
class term/type?” We will answer these questions for Java, Scala,
System F sub

ω , and Scalina.
Note that we use ‘term’ to denote anything that resides at the

‘base’ level, such as an object in OO, or a function in FP. We do not
imply any connection to syntactic terms. A ‘type’ is something that
classifies terms, and thus resides at the next level. We use ‘entity’ to
mean either a term or a type, when it only matters that the denoted
entity can perform computation. Finally, a ‘classifier’ classifies an
entity: a type classifies a term, and a kind classifies a type.

Table 1 gives an overview of the analysis discussed below. The
row of an entry determines what is abstracted from, and the column
denotes the level of the abstraction. When the constructs in a part
of the table are not all first-class constructs, (+) and (-) are used
to make the distinction. We consider a construct “first-class” if it
can be abstracted over. ‘/’ means ‘not supported’. The superscripts
in parentheses are intended to aid the reader in correlating the
schematic representation in table 1 and the following discussion.

In Java, a term may only abstract from a term1 or a type2 using
parameterisation (functional abstraction): as already mentioned, a
method abstracts from the concrete values of its arguments, but a
method is not a first-class term in Java. Similarly, a polymorphic
method may have type parameters, but again, such a method is not
a first-class entity. Terms cannot have abstract members3, 4 .



At the type level, still in Java, a constructor argument5 can
be considered as parameterising a type in a value (a constructor,
like a method, is not a first-class term). Since Java 5.0, a class (a
type) may take type parameters6 , but a parameterised type is not
a first-class type unless it is fully applied. Finally, a class with an
abstract method7 is a first-class type that abstracts from a term.
When deciding whether a type is first-class, we do not take into
account whether it may be instantiated.

Scala introduces several improvements over Java. Firstly, λ-
abstraction8 is directly supported, thus a term abstracting from a
term is a value. Secondly, we recently implemented direct support
for type constructor polymorphism in Scala 2.5, so that a parame-
terised type9 is considered a first-class (higher-kinded) type [19].
Finally, a class may have abstract type members10 .

System F sub
ω is a purely functional calculus. Naturally, we only

consider its support for abstraction using parameterisation. A term
that abstracts from a term is written as λx : T.t11 . A term may also
be parametric in a type: λX : K.t12 . A type abstracts from a type
as λX : K.T 13 . To abstract from terms at the level of types14 , we
must turn to dependently typed versions of the calculus.

The overview in table 1 contains a striking void in the quadrant
of terms with abstract members3 ,4 ,15, 16 .

Nevertheless, Self, one of the earliest OO languages, represents
a method as an object with “argument slots” [30]. In other words,
a method is a first-class term (i.e., an object) that uses abstract
members to abstract from other terms.

Finally, Scalina’s object-oriented abstraction mechanisms are
split out with respect to the clients they cater to. An object can
abstract over an object that is to be supplied by an external client
using a value un-member17 . A type may abstract over a value in
the same way 18 . Since objects are not allowed to have abstract
members, they cannot abstract over terms19 or types20 for internal
clients. Types, on the other hand, may contain abstract value21 or
type22 members. Finally, an object23 or a type24 type can abstract
over a type using a type un-member.

Thus, our brief survey has shown that Scalina supports all vari-
ations of abstraction mechanisms that are used in practice, with-
out admitting too many features that do not appear in a full lan-
guage. We designed Scalina so that it includes the main concepts
of object-oriented languages, such as objects with named members
and mutual recursion through a self variable, mixin composition,
subtyping, and lightweight dependent types. Furthermore, although
Scalina does not contain any mechanisms for parameterisation, it
can safely and straightforwardly encode functional-style abstrac-
tion as well. Others have studied the advantages of OO-style ab-
straction over the functional style, and vice versa [6, 29, 12, 13].

6. Encoding System F sub
ω

Table 2 shows how terms, types and kinds from System F sub
ω [22,

Ch. 31] can be encoded in Scalina. Using Pierce’s terminology, an
abstraction is modelled as an object with an un-member a that
represents the argument, and a member apply that encodes the
body of the abstraction. Note that we have to infer the type T’.
Application is decomposed into refining the a un-member with the
encoding of the actual argument, and selecting the apply member.

The encoding of a polymorphic value re-uses the pattern we
used for term abstraction, except that the argument is now a type
un-member instead of a term-level one. We use an interval kind
to model type bounds: ‘<: T ’ becomes ‘: In(Nothing, JTK)’.
Type application does not present new challenges.

At the level of types, function types and universal types become
the obvious structural types, which we established when encoding
(polymorphic) function values. Similarly, we simply hoist our term-
level abstraction and application to the type level to replace oper-

Construct . . . in term (1st class?) . . . in type (1st class?)
Java

Parameter (FP)
Term method (-) 1 constructor (-) 5

Type method (-) 2 generic class (-) 6

Abs. mem. (OO)
Term / 3 class w/abs. method (+) 7

Type / 4 /
Scala

Parameter (FP)
Term method (-) constructor (-)

anon. function (+) 8

Type method (-) generic class (+) 9

Abs. mem. (OO)
Term / 15 abs. val/def (+)
Type / 16 abs. type member (+) 10

System F sub
ω

Term λx : T.t 11 /14

Type λX <: T.t 12 λX :: K.T 13

Scalina
Term (ext.) obj. w/value un-member 17 type w/value un-member 18

Term (int.) / 19 type w/value abs. mem. 21

Type (ext.) obj. w/type un-member 23 type w/type un-member 24

Type (int.) / 20 type w/type abs. mem. 22

Table 1. Abstraction mechanisms: overview
(The superscripts link the entries in the table to the relevant part of the discussion.)

ator abstraction and application. The kind-level is easily derived
from the type that encodes operator abstraction.

The evaluation of the encoding of a value application proceeds
by E_RFN pushing the refinement of the object to the object’s type,
so that E_SEL can look up the apply member in the type that now
has a concrete value for it. Evaluating a type application also uses
E_RFN to push the concrete type information into the type of the
value, which tracks the value’s members. However, this binding
is never used during later evaluation steps, as the only types that
interact with evaluation, are those that can be used to instantiate a
new object. These types must statically expand to a structural type,
which is not possible for type un-members.

Finally, we note that the contravariant rule for un-member con-
formance means that Scalina can encode full System F sub

ω , and that
the undecidability of the latter should thus carry over to Scalina.
We defer a more formal account of the correspondence with Sys-
tem F sub

ω to future work.

7. Meta-theory
The traditional term-level safety proofs show that it suffices to type
check a program once in order to guarantee certain properties for
every possible evaluation trace. In Scalina, we ensure that member
lookup never fails to find the required label with the corresponding
right-hand side, and that an un-member is at most refined once on
the same object.

The type-level guarantees are similar, though more subtle. Since
type selection is only well-kinded if the target of the selection is
known to become a concrete type during type checking, we ensure
that selection can always proceed on types of kind Concrete(R).
Note that we consider certain other type selections, such as select-
ing a nominal type, to be in canonical form, so that this kind of
selection is not expected to proceed.

We are actively working on the proofs of the meta-theory and
their precise formulation.



JtKt′ ≡ replace the free variable in the encoding of t with t′

Jλx : T.tK ≡ new {self ⇒ val a: Un[JTK]; val apply: T’ = JtKself.a}
Jt t′K ≡ (JtK /{val a = Jt’K}).apply
JλX <: T.tK ≡ new {self ⇒ type a: Un[In(Nothing, JTK)]; val apply: T’ = JtKself.a}
Jt [T ]K ≡ (JtK /{type a = JTK}).apply

JTopK ≡ Any
JT → T ′K ≡ {val a: Un[JTK]; val apply: JT’K}
J∀X <: T.T ′K ≡ {type a: Un[In(Nothing, JTK)]; val apply: JT’Kself.a}
JλX :: K.T K ≡ {type a: Un[JKK]; type apply : K’ = JTKself.a}
JT T ′K ≡ (JTK /{type a = JT’K})#apply

J∗K ≡ Struct({x ⇒ })
JK ⇒ K′K ≡ Struct({self ⇒ type a: JKK; type apply: JK’K})

Table 2. Informal encoding of System F sub
ω syntax in Scalina

Γ ` m WF m is well-formed

Γ ` t : T

Γ ` val l : T = t WF
M_VALC

Γ ` T : Struct (R)

Γ ` typeL : Nominal (R) = T WF
M_TYPENOM

Γ ` T : K

Γ ` typeL : K = T WF
M_TYPEC

Γ ` T : K

Γ ` val l : T WF
M_VALA

Γ ` K WF

Γ ` typeL : K WF
M_TYPEA

Figure 11. Well-formedness of members

Γ ` K <:K ′ K is a subkind of K ′

Γ ` K2 <:K1

Γ ` Un [K1 ] <:Un [K2 ]
SK_UN

Γ ` Nominal (R) <:Struct (R)
SK_NOM

Γ ` Concrete (R) <:Struct (R)
SK_CONC

Γ ` Struct (R) <: In (Nothing , R)
SK_STRUCT

Γ ` R1 <:R2

Γ ` Concrete (R1) <:Concrete (R2)
SK_CTX_CONC

Γ ` R1 <:R2

Γ ` Struct (R1) <:Struct (R2)
SK_CTX_STRUCT

Γ ` T2 <:S2

Γ ` S1 <:T1

Γ ` In (T1 , T2) <: In (S1 , S2)
SK_CTX_IN

Figure 12. Subkinding

8. Related Work
8.1 Safe type-level abstraction
Since the seminal work of Girard and Reynolds in the early 1970’s,
fragments of the higher-order polymorphic lambda calculus or Sys-
tem Fω [15, 24, 5] have served as the basis for many programming
languages. Furthermore, the interaction between higher-kinded
types (types with un-members) and subtyping is a well-studied sub-
ject [23, 9]. A similarity of interest is Cardelli’s notion of power
type [8], which corresponds to Scalina’s In(S, T) kind.

Despite the vast volume of work on type-level abstraction in
functional programming languages, object-oriented languages of-
fer comparatively limited support. Most OO languages do provide
parametric polymorphism [4], but few give type constructors first-
class status. Cremet and Altherr extend Featherweight Generic Java
with higher-kinded types [3]. To the best of our knowledge, besides
OCaml [17, 6.8.1], Scala is the only OO language with support for
type constructor parameters [19]. Of course, this can be encoded in
languages with abstract type members, such as gbeta [11].

We briefly mention type-level computation [27, 28, 25], which
can be used to enforce properties of term-level programs. The tra-
ditional term-level programmer need not be the one who designed
the type-level machinery to enforce these properties.

8.2 Modelling OO
Given the wealth of research on extensions of the λ calculus, it is
only natural that studies of the essence of object-oriented languages
build on these ideas. Even though encoding objects requires a
lot of extra machinery, such as records, subtyping, and recursive
types, this complexity is probably inherent. However, modelling
OO using a combination of FP and OO seems to fail Occam’s razor.
Nonetheless, a lot of object calculi fall in this category [16, 14, 10].

The other side of the spectrum – using a purely object-oriented
calculus without FP concepts – can be traced back to Abadi and
Cardelli’s seminal work [1, 2]. However, in their first-order system,
“an object type is invariant in its component types”. Thus, object
types cannot encode function types in the presence of subtyping, as
the latter require a mix of contravariance and covariance. To solve
this, they introduce universal and existential quantification in their
second-order system. Universal quantification, like un-members,
behaves contravariantly. Similarly, existential quantification intro-
duces covariance, which we allow for normal members.

In other respects, Abadi and Cardelli’s first-order system is
more powerful than Scalina: our refinement operator does not allow
recursion through the self variable. However, this limitation simpli-



fies the calculus without ruling out refinement’s primary use, which
is similar to function application: supplying a value to a function
does not rely on the values supplied earlier.

To further the similarity with application, refinements do not
require type or kind annotations for the supplied entities. Nonethe-
less, it is possible to have type un-members that classify value un-
members: the type un-members must then be refined before the
value un-members, because the supplied types determine the ac-
ceptable values for the value un-members. Note that we use first-
class types, which do have a self variable, for overriding.

Scalina was directly inspired by the νObj calculus [21]. The
main difference is that Scalina introduces un-members and refine-
ment at the term and type level. νObj uses class templates for term-
level abstraction, and only provides covariant abstract type mem-
bers for type-level abstraction. The latter implies that well-formed
type-level applications may surprise the type function with unex-
pected arguments. It is important to note that this does not have any
impact on the run-time behaviour of such programs. It does how-
ever fail to provide the type-level equivalent of the guarantees that
term-level abstraction builders have come to rely on.

9. Conclusion and Ongoing Work
The immediate goal of Scalina is to provide a foundation for prov-
ing our extension of Scala with type constructor polymorphism
sound. In this paper, we have shown how our calculus improves
over the νObj calculus with respect to safe type-level abstraction.
More specifically, we formulated the notion of kind soundness,
which ensures safety for type-level abstractions. To achieve this,
we distinguish “input” and “output” members. Given the covariant
nature of Scala’s abstract type members, they should only be used
for output. We introduce un-members to deal with input. Further-
more, we illustrated Scalina’s uniform, and purely object-oriented,
treatment of term-level and type-level abstractions as first-class en-
tities.

Although we are well on our way to proving Scalina sound
at both levels, the meta-theory is not yet complete. Once these
results have been established, we will define a type-preserving
translation from an essential subset of Scala with type constructor
polymorphism into Scalina. Similarly, the full correspondence with
variants of System F sub

ω remains an interesting topic to explore.
A broader perspective on our work is that more powerful type-

level abstractions are an important tool in improving the robustness
of software written in tomorrow’s languages. In order to make it
practical to use these techniques, we must be able to write type-
level abstractions once and re-use them safely in different settings.
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